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Abstract

Deep generative models have been an upsurge in the deep learning community since they were proposed. These models are
designed for generating new synthetic data including images, videos and texts by fitting the data approximate distributions.
In the last few years, deep generative models have shown superior performance in drug discovery especially de novo
molecular design. In this study, deep generative models are reviewed to witness the recent advances of de novo molecular
design for drug discovery. In addition, we divide those models into two categories based on molecular representations in
silico. Then these two classical types of models are reported in detail and discussed about both pros and cons. We also
indicate the current challenges in deep generative models for de novo molecular design. De novo molecular design

automatically is promising but a long road to be explored.
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Introduction

In the long-term struggle between humans and diseases, espe-
cially the recent pandemic of coronavirus disease 2019 (COVID-
19), drugs are playing an increasingly significant role. However,
the drug discovery process has been confronted with obstacles,
which requires a great deal of manpower, material and financial
resource. For example, the drug development cycle from pre-
clinical target screening to final marketing takes an average
of at least 13.5 years [1]. And developing a new drug for a
pharmaceutical company is a costly tour of about 1.8 billion
with a high failure rate. The challenging process of drug dis-
covery is derived from the large and discrete searching space
of chemical molecules [2]. Specifically, the scale of possible
structures of drug-like compounds is between 10 and 10%, but
a small proportion of them about 10® are therapeutically rele-
vant [3, 4]. Traditional methods like high-throughput screening
[4] are inefficient as the required amounts of resources and

small number of hit compounds are not balanced. Big data and
high-performance computing capabilities have allowed artificial
intelligence to surpass traditional brute strength [5]. With the
widespread application of deep learning, it is naturally con-
sidered as the potential way for drug discovery. Deep learning
has been utilized in drug discovery and development, providing
a new direction in pharmaceutical science [6]. Some related
applications are shown in Figure 1.

Deep learning, whose prototype was the perceptron known
as neural networks for pattern recognition [7], aimed at learning
the latent distribution and representation of data. The concept
of deep learning was formally proposed for solving the vanishing
gradient problem by Hinton et al. [8] in 2006. Then in the Ima-
geNet image recognition competition, the team led by Hinton
used the AlexNet model [9] that made a sensation for eliminating
vanishing gradient via the ‘ReLU’ activation function. In 2016,
the triumph of AlphaGo [10] proved that deep learning was
promising in surpassing humans. Up to now, deep learning has
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Figure 1. The applications of deep learning in drug discovery and development.

been applied successfully to computer vision [11, 12], natural
language processing [13, 14], and some other fields [15, 16]. Deep
neural networks are divided into discriminative models and
generative models. The discriminative models which reflect the
difference between heterogeneous data are to find the optimal
classification [7]. The generative models, modeling the prior
probability, represent the similarity of congener data.

Deep generative models develop rapidly as generating new
synthetic data from given samples, including images [17], text
[18] and video [19]. The representations of molecules in silico
are similar to texts in natural language processing and graphs in
social networks. Hence, it is natural to extend such models for
de novo molecular design in drug discovery [20]. Different from
using discriminative models to screen databases and classify
molecules as active or inactive, deep generative models design
new molecules with target properties from scratch. The desire
for generating molecules automatically has been mentioned in

the past by Gémez-Bombarelli et al. [21]. And in recent years,
plenty of deep generative models have been devoted to boosting
the de novo molecular design, which predominantly has fol-
lowed two strategies based on the representations of molecules
in silico. The first strategy focuses on a sequence represen-
tation—simplified molecular input line entry system (SMILES)
[22], which utilizes deep generative models and text to generate
moleculars. An alternative is to encode molecular into graphs
[23] that learn to aggregate information (e.g., bond features and
atoms). As a consequence, we categorize these typical models
into two categories, i.e. SMILES-based and graph-based models.

In this review, we mainly focus on deep generative mod-
els for molecular generation in drug discovery. We first intro-
duce the representation methods of molecules and conclude the
prevalent databases. We show the pros and cons of different
representations. As for generative models, we emphasize the
recent advances based on different representations in the de
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novo molecular design domain. The objective evaluation and the
comparison of state-of-the-art models facilitate the selection
and improvement for readers. However, there are still some
challenges about data and deep learning methods in drug dis-
covery. Therefore, we enumerate current challenges that have
been observed in the field to promote the development of new
research. Here, the survey is meant to accelerate drug discovery
through the sharing and comparison of deep generative models,
finally reduce the cost and time with the intervention of silico
models.

Molecular representation and dataset
in molecular generation

Molecular representations

The past few decades have observed the arising of keen interest
in computational methods especially with the emergence of
deep learning. The appearance of such techniques opened the
door to the computer-aided drug design. The major challenges
here were how to recognize and store molecules accurately by
computers and be acceptable for chemists. A flurry of molecular
representations have been designed in the last few years owing
to the rapid development of computers [24]. Here we introduce
two common representations used in de novo molecular design,
including SMILES and graphs.

SMILES-based representation

Sequence-based representations mainly use linear strings to
express compounds and they can easily be memorized and
processed by computer systems. One-dimensional linear repre-
sentation currently includes SMILES and international chemical
identifier (InCHI) [25]. SMILES is an ASCII string that uses a map-
ping algorithm from molecular graphs to text, where simplifies
chemical structure with strict grammars. The example of the
SMILES form of a molecule is shown in Figure 2A. The conversion
from molecular structure to texts makes SMILES easy to be
processed by computers, convenient for chemists and easy to
use for training machine learning models [26]. The first strategy
for automatic molecular design is to use SMILES-based deep
generative models and convert this representation into one-hot
vectors. Both the good sides, there are also the disadvantages
of SMILES: (1) SMILES fails to capture the molecular structural
similarity. A small change between two similar structures may
cause the SMILES strings to be greatly different, which the latent
space learned from generative models is not smooth. (2) The
SMILES string is non-unique, a molecule can be encoded into
multiple SMILES representations. These problems have been
solved more or less in current work. Aiming at the shortages
of canonical SMILES in the generative models, there are many
studies in producing the variants of the SMILES notation and
improving the models, more will be shown specifically in the
section of SMILES-based models..

Graph-based representation

SMILES is generated from the graph-based representation of
molecules [27]. And structural formulas are often used to repre-
sent molecules in chemistry. Thus, a more intuitive way to depict
molecular structures is the molecular graph. The example of the
graph form of a molecule is shown in Figure 2B. Each molecule
can be represented as an undirected graph G where the nodes set
V and the edge set £ are composed of atoms v;, and bonds (v;, ))
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respectively. Specifically, each atom type (carbon, hydrogen, oxy-
gen., etc.) can be encoded into T dimensional one hot vector
xi, and the bond type (single, double, triple and aromatic bond)
can be represented as y € {1,...,Y}. With the hot research trend
of deep learning on the graph [28, 29], training deep generative
models based on the molecular graph has emerged in a matter
of just a few years and now many works make this be one of the
most prominent fields. The more details of graph-based works
will be described below.

Dataset for drug discovery

The training of models in machine learning is based on the
data, hence we focus on the datasets involved in de novo molec-
ular design here. Specifically, we divide the datasets involved
in the typical molecular generative models into the following
categories.

The first is the comprehensive databases, which usually
contain diverse information such as biological activity, chem-
ical structure and physical properties, including ZINC [30, 31],
ChEMBL [32], PubChem [33] and DrugBank [34, 35] appeared in
higher frequency. In particular, the data fields of drug in Drug-
Bank can be linked to other databases like PubChem [36]. The
second one is the merged databases. These databases are chem-
ical datasets by combining and screening existing databases
not only for generating molecules, but also for the validation
of various machine learning methods as the benchmark. The
MOSES platform [37] screens the ZINC by some rules and divides
the final data set into three groups, training set, test set and
scaffold set to ensure the diversity of molecules. There are also
task-specific databases, which are used in other tasks related to
drug discovery, such as L1000 CMap [38] with gene expression
profiles, CEPDB [39] for learning potential structures of photo-
voltaics and so on. The last type, chemical space datasets, con-
tains compounds of specific atom composition in a way similar
to enumerating chemical space. For instance, quantum machine
(QM) [40, 41] extracted from GDB [42, 43], containing molecules
composed of CHONF and their quantum chemical properties.
Table 1 shows the specific description of the datasets which
are commonly used for de novo molecular design, including the
number of compounds contained in these datasets up to now,
released years, links, etc.

Deep molecular generative models

In recent years, de novo molecular design, a concept of generating
molecules with desired from scratch, can be implemented by
either professional experts or machines. Due to the development
of generative models, molecular generation not only decreases
the searching space of chemical molecules but also time con-
sumption for drug discovery compared with humans. Here, we
overview some typical molecular generative models based on
two classical representations in the following and summary the
timeline of them in Figure 3.

SMILES-based models

Powerful deep learning techniques have driven the development
of generative models. After training on realistic data, generative
models are able to produce new synthetic data that are similar to
given samples. A central question in deep generative models to
be solved is how to capture the unknown data distribution and
reveal the internal hidden structures. One of the ways is to learn
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Figure 2. The process of de novo molecular design for drug discovery.
Table 1. Datasets of de novo molecular design for drug discovery
Datasets Description Compound Link Year Reference
ZINC A free virtual scanning dataset of > http://zinc15.docking.org/ 2004  [30,
commercial compounds 750000000 31]
ChEMBL Manage and edit biologically active 1961462 http://zinc15.docking.org/ 2009 [327]
molecules with drug-like properties
QM9 Small organic molecules with maximum 134k http://quantum-machine.org/datasets/&# 2014  [40,
nine atoms in four different types x2216;#qm9 41]
PubChem Unique structures with the largest and 103278272 https://pubchem.ncbi.nlm.nih.gov/ 2004 [33]
free chemical information
ExCAPE-DB Aggregate PubChem and ChEMBL 997992 https://solr.ideaconsult.net/search/excape/ 2016  [44]
GDB-13 Chemical universe database 977468314 http://gdb.unibe.ch/downloads/ 2009  [42]
GDB-17 Chemical universe database 50000000  http://gdb.unibe.ch/downloads/ 2012 [43]
MEGx Natural products from plants and > 4200 https://ac-discovery.com/purified-natural- 2017 /
microorganisms product-screening-compounds/
DrugBank With bioinformatics and cheminformatics 13643 https://www.drugbank.ca/ 2006  [34,
resource 35]
MOSES A benchmarking dataset 4591276 https://github.com/molecularsets/moses 2018 [32]
CEPDB The Harvard Clean Energy Project Database 2300000 http://cepdb.molecularspace.org 2011 [37]
L1000 Contains mainly induced gene expression 32855 https://clue.io/ 2017 [38]

profiles

the data representations which can be easily modeled [45]. In the
field of de novo molecular design, a good representation also is
capable of being converted back into molecules readily. In terms
of the simple characteristics of SMILES, it has been proven easier

to learn for deep learning. And the sequence-based methods can
be further divided into variational encoder (VAE) [46], generative
adversarial networks (GANSs) [47] and recurrent neural networks
(RNNS5) [48] based models.
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Figure 3. The timeline of deep generative models for molecular design.

® VAE-based generative models

VAE generally contains an encoder and a decoder, which the
encoder maps discrete data to a continuous latent space[46]. Fur-
ther, in order to perform unconstrained optimization for specific
properties, the decoder is responsible for reconstructing from
the latent vector to SMILES with chemical validity. VAE-based
models aim at maximizing the evidence lower bound (ELBO)
of the likelihood with Kullback-Leibler divergence. Notably, the
latent space of VAE for molecular generation is potentially oper-
ated such as controlling the specific properties and the training
process is stable. However, reconstructing the training sets limits
the ability of exploring in unknown chemical space.

Gdémez-Bombarelli et al. [21] first proposed the character VAE
composed of encoder, decoder and predictor (refer Figure 2.1).
First, the kernel density estimation was used to learn to cap-
ture the relevant features of the molecules. Then continuous
latent spaces were learned on dimensions, optimizing the spe-
cific properties of the molecules, allowed the use of powerful
gradient-based to efficiently guide the search. Adding the joint
training task of multi-layer perceptron and encoder guaran-
teed the prediction ability of molecular properties. A trick here
was using Gaussian process to reach the points with target
attributes. The contribution could be described as a new method
for exploring the molecular space in which no prior knowledge
was required to manually construct a compound library. Simul-
taneously, the model captured the character characteristics of
the molecule and showed good predictive ability. We take the
view that not all the generated one in this model can be con-
verted back to original space owing to the non-uniqueness of
SMILES. For this situation, one approach is to give the model
explicit restrictions about how to produce valid molecules. For
instance, GVAE [49] incorporated the grammar production rules
of SMILES into models. It indicated the discrete data could be
directly represented as the parse tree by using context-free
grammar. The decoder generated valid outputs by learning these
rules in order. Taking parse trees into account enabled the model
extended to other text representation learning without context.
Later, Dai et al. [50] argued that GVAE was lack of semantics
and structural information such as the generated ring bonds

must be close. However, adding the extra structural constraints
in GVAE may cause the unnecessary waste of computing and
time. Inspired of the attribute grammar, Dai et al. [S0] proposed
to introduce the stochastic lazy links into attribute grammars
which achieved on-the-fly generated guidance for both syntax
and semantics check.

® GANSs-based generative models

During the past 5 years, case studies using GANs towards the
generation of novel molecules with specific desired properties
have made milestone progress, especially the combination of
GAN and reinforcement learning [51]. GAN includes a generator
that imitates the real samples and a discriminator that distin-
guishes the output of the generator from the actual sample to the
greatest extent, while the generator is a liar for the discriminator.
The ultimate goal of GANs is to make the discriminator unable
to judge whether the output of the generator is the fake. Due
to the unstable training of GAN, some variants were proposed
like wassertein GAN (WGAN) [52]. WGAN incorporates the Earth-
Mover (EM) distance, which reflects the minimum cost under
optimal planning to get a smoother gradient. WGAN not only
alleviates the problem of unstable training, but also evaluates
reliably generative models to avoid mode collapse.

Building on SeqGAN [53], called objective-reinforced gener-
ative adversarial networks (ORGAN) [51], was proposed where
added the expert-based rewards under the framework of a
WGAN [52]. The combined rewards from the discriminator
and domain-specific objectives were extended to the training
process that the generator was trained as an agent (refer
Figure 2.2). There was also a penalized item which avoided
mode collapse. ORGANIC [54], a promotion of ORGAN for inverse-
design chemistry, implemented the molecular biased generation

towards specific properties.
Besides using GANs associated with reinforcement learning,

many studies followed the mix of GANs and autoencoder to alle-
viate the instability of GANSs. For instance, Prykhodko et al. [55]
proposed the latentGAN which combined an autoencoder and
a GAN. Previous experiments showed that different randomized
SMILES representations of the same molecule were encoded into
identical latent vectors which moderated the overfitting due to
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the canonical SMILES. Compared with the proposed GAN-based
models, this architecture was comprised of a heteroencoder, that
converted pairs of different representations of SMILES into latent
vectors, and the decoder, the inputs of which were trained on the
generator and discriminator. It is apparent that SMILES is not
the input of the generator and discriminator, but instead latent
vectors. Another example was the stacked GAN conditioned
on the gene expressions signatures that combines with GVAE.
Efficient approaches considering the ligand-target interaction to
generate molecules with desired biological activity were lacking
before. Lucio et al. [S6] employed the transcriptomic data as
conditions that obtained the active-like molecules for desired
targets.

® RNNs-based generative models

VAE models with no extra constraint have a high proba-
bility to induce invalid molecules. However, language models
extract the information automatically at grammar and semantic
levels. RNNs are connected models which are able to capture
the dynamics of sequences via cycled units in the network of
nodes. Consequently, the models can easily process the input
and output that consists of sequences. In recent years, some
improvement on the network architectures like long-short term
memory (LSTM) [57] and gated recurrent unit (GRU) [58] have
been proposed due to the difficult training of RNNs. LSTM,
adding the memory cell that replaces conventional units, solves
difficulties with training encountered by RNNs. And the simplic-
ity of GRU is more suitable for building larger networks due to the
smaller amount of parameters.

Since the sequence representation of SMILES, the analogy of
natural language processing tasks and molecular generation
is feasible [27]. For RNNs, the features obtained from large
molecular datasets can be transferred to produce molecules
with activity on demand in small ones, so that Segler et al.
[59] generated focused molecule libraries by retraining the
model (refer Figure 2.3). Sampling from the large-scale datasets
ensured the diversity of molecules and fine-turning increased
the focused properties. The drawback of the model was lack of
interpretability. Besides, Zheng et al. [60] built a quasi-biogenic
compound library including stereo-chemical properties. In
addition to adding transfer learning, the computational model
proposed by Moret et al. [61] called chemical language model
(CLM), was used to design novel molecules in a designated
area of the chemical space by combining three preceding
optimized methods (data augmentation, temperature sampling
and transfer learning). Linking bioactive synthetic compounds
with natural products provides source of inspiration for drug
discovery and the result expands the application scope of CLM in
a small data regime. Notably, conditional generative models have
been recommended, which utilized additional information to
guide the molecular design. For example, molecular descriptors
values were incorporated into the RNNs-based models [62],
which were more focused that the traditional methods.

As mentioned above, the canonical SMILES form has the
lower capacity to create large chemical spaces of valid and
semantics structures than randomized SMILES. [63] sampled
with replacement 2 billion times and explored three different
variants of the SMILES notation (canonical, randomized and
deep) from GDB-13 to prove that hypothesis. In addition, dif-
ferent cell architectures (LSTM [57], GRU [58]) and training set
sizes (1000000, 10000 and 1000) were the factors that affected the
performance. Experiment showed that LSTM on 1 million ran-
domized SMILES achieved state-of-the-art performance. More-
over, traditional RNNs always generate molecules in a forward

manner (left to right). Motivated by the bidirectional RNN [64],
non-univocity and non-directionality of SMILES, bidirectional
molecule designed by alternate learning (BIMODAL) [65] was pro-
posed. BIMODAL referred the neural autoregressive distribution
estimator (NADE) [66], which reconstructed missing informa-
tion by reading the preceding and subsequent tokens in both
directions, and synchronous forward backward RNN (FB-RNN)
[67] which generated SMILES forward and backward. BIMODAL
predicted the sequence alternately by forward at odd positions
and backward at even positions. Due to the limitation of two
generating directions in BIMODAL, Arés-ous et al. [68] reported a
model that generated molecules from a given scaffold without
an assigned attachment. Specifically, the model made use of
a slicing algorithm to obtain scaffold sets with randomized
SMILES representations. And then partially built molecules were
decorated in one attachment once or more than one at a time.

Since SMILES is regarded as string of texts, a large number of
models in natural language processing are able to be extended
to the field of de novo molecular design. In future research, for
example, we can consider the molecular generation for desired
properties as a translation, which can translate from the spe-
cific target language (protein sequence) to the SMILES language.
Notably, despite the surge of SMILES-based models in recent
years, there are still some burning problems. Not only is it facing
the issues of validity, but the unstructured nature of SMILES
makes two similar molecules be quite different with a high
probability. And it is expensive to force the validity constraint
to incorporate into the decoders, which requires for designing a
novel representation with more structural information.

Graph-based models

Deep molecular generative models based on graphs have been a
hot trend in the graph research with a prospect for drug discov-
ery. In recent three years, there are many surprisingly effective
works in the field of molecular graph generation. Considering
the success of VAE models on SMILES, architectures based on
VAE with molecular graph design were later developed. Gémez-
Bombarelli et al. [21] believed that graph-based representation
methods should be further explored. Moreover, with the popu-
larity of graph neural networks, graph-based models also play a
dominate role in de novo molecular design.

® VAE-based generative models

One of the most representative work is junction tree varia-
tional autoencoder (JT-VAE) [69]. JT-VAE assembled the building
blocks from the substructures of molecules. The substructures
included rings, functional groups and atoms by decomposing the
molecules from training sets. In contrast to generating graphs
node by node before, the entire process was divided into two
phases, first represented the valid scaffolds and their arrange-
ment as the trees and then integrated the whole trees into the
graph by adding edges between intersecting components. JT-VAE
outperformed the proposed models including CVAE [21], GVAE
[49], SD-VAE [50] and GraphVAE [70] in molecular reconstruction
and the octanol-water partition coefficients logP score, at mean
whiles, JT-VAE reached 100% in generating valid molecules. The
results positively advocated the model for graph-based de novo
molecular design, with JT-VAE showing superior results to the
previous methods for most of the criteria in the tested condi-
tions. However, this design had three critical limitations. First, it
was more difficult to grapple in properties optimization with JT-
VAE because two molecules with identical junction tree might
correspond with markedly different attributes. Second, leaving
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node order permutation out of consideration during genera-
tion procedure caused time-consuming. The ultimate sequence
under some possible node permutation might be mapped into
the same graph. Third, less than 20 atoms in a substructure
were not practical due to the complexity of drug molecules
in realistic. Later, in [71], the authors regarded the molecular
optimization task as graph-to-graph translation which aimed to
learn a multi-model mapping between two domains.

Recently, Jin et al. [72] keeps on the research of molecular
generation by employing substructures to enrich the proper-
ties of molecules. However, integrating multiple properties into
one molecule is a challenge, there are two reasons: (1) lack-
ing of the molecules fits all the constraints such as potency,
safety and desired properties in realistic and (2) bad perfor-
mance of successful ratio and novelty when adding all the
property constraints. To address these drawbacks, substructure
sets with respect to single property, called molecular rationale,
were assembled into multi-rationale vocabularies of interest and
completed by graph generation model. Four properties includ-
ing c-Jun N-terminal kinase 3 (JNK3) and glycogen synthase
kinase 38 (GSK-38), quantitative estimate of drug-likeness (QED)
[73] and synthetic accessibility (SA) [74], aiming at generat-
ing Alzheimers disease dual inhibitors with drug-likeness and
synthetically accessibility, reached a 100% successful rate.

Correlations between edges often are decomposed into dis-
crete sequenced representations during the generation trace.
CGVAE [75] was incorporated two types of correlations including
some known rules like valency rules as hard one and ring strain
(adverse to cycles) as soft one. CGVAE was kept correlative to con-
vert into SMILES with validity semantically. Notably, molecules
with similar properties practically differed in the size of nodes
and edges while generative models for molecular graphs like
GraphVAE [70] did not take this into account. Samanta et al.
[76] have proposed NEVAE aggregated features by distinct hops
number. Concurrently, graphs generated from NEVAE took on the
permutation invariance at node level and meditated the impact
of spatial position on properties. Specially, NEVAE was integrated
potential energy with the stability of atoms implemented by
Gaussian toolbox.

® GANs-based generative models

Albeit wide application of GANs in some areas, the develop-
ments of GANs in generating molecular graphs are tender and
delicate. To our best knowledge, GANs are inclined to spawn
mode collapse [77]. Since averting likelihood-based loss func-
tions, GAN sends molecular optimization hard stable. It is man-
sized to balance adversarial training and property constraints.
De Cao et al. [78] proposed GANs-based graph generative models,
called MolGAN, utilized the likelihood free method and avoided
the expensive graph matching procedure. Similar to ORGAN,
MOoIGAN applied the policy gradient reward and WGAN with
penalty gradient for small molecular graphs.

Cycle-consistent generative adversarial network (CycleGAN)
[79] addressed different domains translation without paired
input-output examples so that it is potential to optimize
molecules from sets without desired properties. Mol-CycleGAN
[80] was designed to implement structural transformations
and molecular optimization under the embedding of JT-VAE.
Datasets were divided into two parts, one was not equipped
with target properties (namely halogen moieties, number of
aromatic rings, active) for training and the other was opposite
for testing. Notably, bioisosteres are groups or substituents that
possess similar chemical properties and produce a wide range of
similar or opposite biological activities. Bioisosteres replacement
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like CF3 and CN is one of the methods in modern molecular
design. Specifically, the framework of Mol-CycleGAN could be
described as follow: (1) datasets: sets X (e.g., with CN group) and
Y (e.g., with CF3 group); (2) mapping: G : X - Yand F: Y — X)
cycle consistency loss: encouraged F(G(x)) ~ x and G(F(y)) ~ y)
metrics: optimized values of a given property, such as logP. Mol-
CycleGAN has shed new light on molecular optimization under
the realistic situation of devoid paired samples. Inspired by Mol-
CycleGAN, we can regard molecular optimization as the problem
of machine translation or graph translation.

® RNNs-based generative models

Generative networks based on RNNs model the graph genera-
tion as a sequential process and make auto-regressive decisions
while they generate graphs. GraphNet [81], the first RNNs-based
model on arbitrary graph, was on the framework of the message-
passing neural networks (MPNN) [82]. The essence of GraphNet
was to add a new atom or bond into the existing graph. More
concretely, (1) choosing to add an atom or not, (2) computing the
probabilities over the existing graph to determine if adds a new
edge, (3) calculating the probabilities which one node in graph
to connect. In addition, Li et al. [83] explored MoIMP and Mol-
RNN based on graph convolutional networks (GCN) [84] which
was similar with the generation of GraphNet, which generated
molecules by iteratively adding nodes and edges to the exist-
ing subgraphs. Converting the extra constraints into available
conditional codes that did not require reinforcement learning
provided higher flexibility and outputs the molecules with more
diversity.

GraphRNN [85], a hierarchical model on the graph and
edge levels, aimed at capturing the joint probability of nodes
and edges. The process of graph generation was regarded as
sequences of adjacency vectors under different node orderings.
GraphRNN was equipped with the scalability by introducing a
breadth-first search (BFS) node ordering. Subsequently, Some
works for molecular generation were extended from GraphRNN.
For example, MolecularRNN [86] was added nodes and edges
feature vectors associated with them based on GraphRNN. The
model was inserted valency-based rejection sampling to ensure
valid molecular with 100% rate. It incarnated the traits and
advantages of merging pre-training on large datasets and tuning
with policy gradient algorithm. MolecularRNN outperformed JT-
VAE, GCPN and ORGAN in the penalized logP coefficient and QED
[73] with reinforcement learning.

® Flow-based generative models

Another series of methods, flow-based generative models
[45, 87, 88], have been applied for image generation and have
recently begun to obtain attention in the molecular generation
community. With the help of normalizing flow, the flow-based
generation models explicitly learn the data distribution which
are consist of invertible transformations. The flow takes an
initial variable as input and converts it into a variable with an
isotropic Gaussian by repeatedly using the change of variable
rule, which is similar to the inference procedure in an encoder
of VAE [89]. Non-linear independent components estimation
(NICE) [45] was the first normalizing flow architecture which
showed satisfying performance on the mixed national institute
of standards and technology (MNIST) database and was applied
for inpainting. It just roughly stacked fully connected layers so
that flow-based models needed to be explored further. During
the follow-up work, RealNVP [87] and Glow [88] yielded unusually
brilliant results and became strong performers in the field of
generative models.
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According to what we know, prior works put forward five
models to generate molecular graphs, GraphNVP [90], graph
residual flow (GRF) [91], GraphAF [92], MoFlow [93] and MolGrow
[94] included (refer Figure 2.4). GraphNVP [90], the first flow-
based molecular graph generation model, improved the unique-
ness of molecules. Compared with GraphNVP, GRF [91] reached
almost equivalent performance while the number of param-
eters was reduced. Unfortunately, those two one-shot mod-
els displayed poor performance in generating valid molecules.
Enlightened by the autoregressive and few flow-based models, a
flow-based autoregressive sequential model called GraphAF [92]
was proposed. GraphAF outperformed the contemporary state-
of-art model graph convolutional policy network (GCPN) [36]
and generated 100% valid molecules by incorporating valency
checking. As a one-shot manner, MoFlow [93] was broken many
state-of-the-art results that generated bonds by a variant of Glow
and atoms with a given bond through a new graph conditional
flow. Moreover, the author proposed a new validity correction
procedure by deleting the bond of the last order recursively that
maintained the largest valid components. Recently, MolGrow
[94] showed great results constrained optimization of properties
by using latent variables of the model. MolGrow recursively
splitted a node into two from a single one to generate molecular
structures, which could be regarded as plug-and-play modules.
And the model achieved better performance while learning on a
fixed atom ordering.

Overall, based on the generation process, the existing graph-
based models can roughly classify into two types, one is the
sequential iterative process, the other is one-shot generation.
Specifically, they can divide into atom-by-atom, subgraph-based
(fragment) models. In order to reduce the number of predicting
the edge and train under the possible node permutation, some
models such as RationaleRL, MolecularRNN was adopted in a
BFS manner. Masking in sequence-based models is introduced
for maintaining local structural and functional properties like
NEVAE, CGVAE. Graph-based generative models now play a dom-
inant role in the molecular design due to the advantages of
graphs and the development of graph neural networks, however,
some challenges still remain. To our best knowledge, with the
increases of nodes size, the total calculation will grow up the
square of nodes number at least, which is difficult to acquire the
precise likelihood. Hence, the problem of node ordering should
be better solved, which is beneficial for generating molecules
with high quality.

Challenges

Data. De novo molecular design is facing the common failing in
artificial intelligence, including the representation, quality and
scarcity of data. The training of deep neural networks always
relies on sufficient data namely data-driven. Therefore, con-
structing more satisfying datasets in the field of molecular gen-
eration is also a hot-potato to solve. In addition, data for some
desired targets are scarce. For this, some models [61] choose to
pre-train on the large dataset and then fine-tuned to generate
molecules for the specific targets. We take the view that incor-
porating multi-omics data can make up for the insufficiency of
data scarcity in the future. Further, designing a representation
with enriched information for molecules is also a challenge.
No doubt that sequence-based representations are simpler, but
they ignore the structure information to some extent. More-
over, graph-based methods have been widely used, nevertheless,
incorporating 3D information into graph-based models is still

lacking. Combining 3D information with appropriate structure-
based models in a simple manner is the Achilles’ heel and it
will be an interesting venue for the future work [27]. Last but
not least, learning molecules under the representation of images
may be a feasible orientation due to the mature of computer
vision.

Models. Most of current models for molecular generation
draw lessons from existing methods in computer vision and
natural language processing that do not develop novel models
from the perspective of this field. While molecules imitate the
representation of images and texts, the generation of images
and texts is fault-tolerant. And molecules for drug discovery are
extremely strict with validity. From this aspect, designing unique
models and appropriate representations belongs to molecules
are warranted. To some extent, such models can also be able to
be extended to the problems in other fields. And in the future, we
are also excited about developing a hierarchical model, which
can generate molecular with desired properties in a coarse-
to-fine manner. A hierarchical model is beneficial for extract-
ing different information when incorporating multi-omics data.
As early mentioned, some generative models themselves exist
some challenges to face. For example, although the flow-based
models reconstruct samples perfectly, the cost of computation
is still not as friendly as other generative models. In light of that,
reducing expensive cost of flow-based models is the next action
to optimize. In addition, the explainability of generative models
for molecular design is equally worth being researched.

Metrics. Most of models employ the evaluation metrics from
various aspects as following. Bickerton et al. [73] utilized the
concept of desirability called the QED to measure drug-likeness.
And Fréchet ChemNet Distance (FCD) [95] is a measure of distri-
bution between training sets and generated molecules. That logP
is a particular descriptor estimates the octanol-water partition
coefficient. A variant of logP, called penalized logP [49], takes
synthetic accessibility and ring sizes into account as penalty.
MOSES [37], a benchmarking platform, contains a standardized
dataset, a set of indicators and multiple baselines for comparing
molecular generation models. However, there are several tasks
for which these models generate hard synthetic molecules and
provide synthetic routes difficultly despite performing well on
common benchmarks. And as a matter of fact, these systematic
metrics are a far cry from industry to discovery drugs, namely
the generated molecules do not meet the requirement for the
practical use. How to balance and unify two metrics systems
for discovering drug in a faster and effective fashion runs tough
at present. And designing the metrics for the practical use and
combining with experiments will allow a major step towards
molecular generation.

Conclusion

In this review, we have done our utmost to report different stages
of molecular generation evolutionary path and highlight recent
advances of research. Both of sequence-based and graph-based
generative models have their own merits. The way in which
molecular generative models are developed plays an important
role for drug discovery and mirrors the evolution of deep neural
networks in cross realm. Although substantial progress has been
made, there is still large room for improving the performance
of existing generative models and ameliorating the metrics of
synthetic accessibility. These promotions of technologies and
computing power promise to further advance the qualities of
generating molecules with well-designed drug-like properties
and make further efforts to accelerate the de novo drug design
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in a fully automated fashion. And these advances of molecular
generation also herald a promising future of related problems
such as retrosynthesis. With the development of friendly and
easy-to-use automat tools, collaborative work of chemists and
computer technicians will promote drug discovery further in the
future.

Key Points

¢ The ability of de novo molecular design based on deep
generative models is of great scientific interest and
practical importance for drug discovery.

® There are several publicly available drug-related
datasets for training deep generative models in molec-
ular design.

® There are still challenges on generative models for de
novo molecular design, including data, model design
and evaluation metrics.

Funding

The work was supported by National Natural Science
Foundation of China (61972138), the Fundamental Research

Funds for the Central Universities (531118010355, 531118010626),

Hunan Provincial Natural Science Foundation of China
(2020jJ4215) and the Key Research and Development Program
of Changsha (kq2004016).

References

1.

10.

11.

Paul SM, Mytelka DS, Dunwiddie CT, et al. How to improve
R&D productivity: the pharmaceutical industry’s grand chal-
lenge. Nat Rev Drug Discov 2010; 9(3): 203-14.

Mullard A. The drug-maker’s guide to the galaxy. Nature
News 2017; 549(7673): 445.

Polishchuk PG, Madzhidov TI, Varnek A. Estimation of the
size of drug-like chemical space based on GDB-17 data. J
Comput Aided Mol Des 2013; 27(8): 675-9.

Hert J, Irwin JJ, Laggner C, et al. Quantifying biogenic bias in
screening libraries. Nat Chem Biol 2009; 5(7): 479-83.
Rifaioglu AS, Atas H, Martin MJ, et al. Recent applications
of deep learning and machine intelligence on in silico drug
discovery: methods, tools and databases. Brief Bioinform 2019;
20(5): 1878-912.

Jing Y, Bian Y, Hu Z, et al. Deep learning for drug design: an
artificial intelligence paradigm for drug discovery in the big
data era. AAPS ] 2018; 20(3): 1-10.

Shrestha A, Mahmood A. Review of deep learning algorithms
and architectures. IEEE Access 2019; 7:53040-65.

Hinton GE, Salakhutdinov RR. Reducing the dimensionality
of data with neural networks. Science 2006; 313(5786): 504—7.
Krizhevsky A, Sutskever I, Hinton GE. Imagenet classifica-
tion with deep convolutional neural networks. Advances in
Neural Information Processing Systems 2012; 25:1097-105.
Silver D, Schrittwieser ], Simonyan K, et al. Mastering
the game of go without human knowledge. Nature 2017;
550(7676): 354-9.

LinJ, Pang Y, Xia Y, et al. TuiGAN: Learning versatile image-
to-image translation with two unpaired images. In: European
Conference on Computer Vision. Springer, 2020, 18-35.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Deep generative models for molecular design | 9

Chen X, Duan Y, Houthooft R, et al. InfoGAN: Inter-
pretable representation learning by information maximizing
generative adversarial nets. In: Proceedings of the 30th Inter-
national Conference on Neural Information Processing Systems.
Curran Associates Inc, 2016, 2180-8.

Vaswani A, Shazeer N, Parmar N, et al. Attention is all you
need. In: Advances in Neural Information Processing Systems.
Curran Associates, Inc, 2017.

Hsu ST, Moon C, Jones P, et al. An interpretable generative
adversarial approach to classification of latent entity rela-
tions in unstructured sentences. In: Proceedings of the AAAI
Conference on Artificial Intelligence, 2018.

Huang X, Qi J, Yu S, et al. Mala: Cross-domain dialogue
generation with action learning. In: Proceedings of the AAAI
Conference on Artificial Intelligence, 2020, 7977-84.

Sheng N, Cui H, Zhang T, et al. Attentional multi-level rep-
resentation encoding based on convolutional and variance
autoencoders for IncRNA-disease association prediction.
Brief Bioinform 2021; 22(3):bbaa067.

Shao H, Yao S, Sun D, et al. ControlVAE: Controllable vari-
ational autoencoder. In: International Conference on Machine
Learning. PMLR, 2020, 8655-64.

Song L, Wang A, Jinsong S, et al. Structural information
preserving for graph-to-text generation. In: Proceedings of
the 58th Annual Meeting of the Association for Computational
Linguistics. Association for Computational Linguistics, 2020,
7987-98.

Balaji Y, Min MR, Bai B, et al. Conditional GAN with discrim-
inative filter generation for text-to-video synthesis. In: Inter-
national Joint Conference on Artificial Intelligence, 2019, 1995-
2001.

Xue D, Gong Y, Yang Z, et al. Advances and challenges in
deep generative models for de novo molecule generation.
Wiley Interdisciplinary Reviews: Computational Molecular Science
2019; 9(3):e1395.

Gomez-Bombarelli R, Wei JN, Duvenaud D, et al. Automatic
chemical design using a data-driven continuous representa-
tion of molecules. ACS Central Science 2018; 4(2): 268-76.
Weininger D. SMILES, a chemical language and information
system. 1. introduction to methodology and encoding rules.
J Chem Inf Comput Sci 1988; 28(1): 31-6.

Xia X,Hu]J, Wang, et al. Graph-based generative models for
de novo drug design. Drug Discov Today Technol 2020.

David L, Thakkar A, Mercado R, et al. Molecular represen-
tations in Al-driven drug discovery: a review and practical
guide. ] Chem 2020; 12(1): 1-22.

Heller S, McNaught A, Stein S, et al. InChl - the worldwide
chemical structure identifier standard. ] Chem 2013; 5(1): 1-9.
Elton DC, Boukouvalas Z, Fuge MD, et al. Deep learning for
molecular design-a review of the state of the art. Molecular
Systems Design & Engineering 2019; 4(4): 828-49.
Schwalbe-Koda D, Gémez-Bombarelli R. Generative models
for automatic chemical design. In: Machine Learning Meets
Quantum Physics. Springer, 2020, 445-67.

Faez F, Ommi Y, Baghshah MS, et al. Deep graph generators:
A survey arXiv preprint arXiv:2012.15544. 2020.

Jin S, Zeng X, Xia F, et al. Application of deep learning
methods in biological networks. Brief Bioinform 2021; 22(2):
1902-17.

Irwin JJ, Sterling T, Mysinger MM, et al. ZINC: a free tool to
discover chemistry for biology. ] Chem Inf Model 2012; 52(7):
1757-68.

Sterling T, Irwin JJ. ZINC 15-ligand discovery for everyone. ]
Chem Inf Model 2015; 55(11): 2324-37.

2202 J9qUISAON 91 UO Jasn AJISISAIUN [EWION UeunH Aq 0ZFSSE9/7PEqRAa/9/22/3101e/q10/Wod dnodlwapese)/:sdjy WO papeojumoq



32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

10 | Chengetal.

Gaulton A, Bellis L], Bento AP, et al. ChEMBL: a large-scale
bioactivity database for drug discovery. Nucleic Acids Res
2012; 40(D1): D1100-7.

Kim S, Thiessen PA, Bolton EE, et al. PubChem substance and
compound databases. Nucleic Acids Res 2016; 44(D1): D1202-
13.

Wishart DS, Knox C, Guo AC, et al. DrugBank: a comprehen-
sive resource for in silico drug discovery and exploration.
Nucleic Acids Res 2006; 34(suppl_1).

Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: a
major update to the DrugBank database for 2018. Nucleic
Acids Res 2018; 46(D1): D1074-82.

SunM, Zhao S, Gilvary C, et al. Graph convolutional networks
for computational drug development and discovery. Brief
Bioinform 2020; 21(3): 919-35.

Polykovskiy D, Zhebrak A, Sanchez-Lengeling B, et al. Molec-
ular sets (MOSES): a benchmarking platform for molecular
generation models. Front Pharmacol 2020; 11.

Subramanian A, Narayan R, Corsello SM, et al. A next genera-
tion connectivity map: L1000 platform and the first 1,000,000
profiles. Cell 2017; 171(6): 1437-52.

Hachmann J, Olivares-Amaya R, Atahan-Evrenk S, et al.
The harvard clean energy project: large-scale computational
screening and design of organic photovoltaics on the world
community grid. The Journal of Physical Chemistry Letters 2011,
2(17): 2241-51.

Schiitt KT, Arbabzadah F, Chmiela S, et al. Quantum-
chemical insights from deep tensor neural networks. Nat
Commun 2017; 8(1): 1-8.

Chmiela S, Tkatchenko A, Sauceda HE, et al. Machine learn-
ing of accurate energy-conserving molecular force fields. Sci
Adv 2017; 3(5):e1603015.

Lorenz C Blum and Jean-Louis Reymond. 970 million drug-
like small molecules for virtual screening in the chemical
universe database GDB-13. ] Am Chem Soc, 131(25): 8732-3,
2009.

Ruddigkeit L, Van Deursen R, Blum LC, et al. Enumeration of
166 billion organic small molecules in the chemical universe
database GDB-17. Journal of Chemical ilnformation and Modeling
2012; 52(11): 2864-75.

Jiangming Sun, Nina Jeliazkova, Vladimir Chupakhin, Jose-
Felipe Golib-Dzib, Ola Engkvist, Lars Carlsson, Jorg Weg-
ner, Hugo Ceulemans, Ivan Georgiev, Vedrin Jeliazkov, et al.
ExCAPE-DB: an integrated large scale dataset facilitating big
data analysis in chemogenomics. Journal of Cheminformatics,
9(1): 1-9, 2017.

Dinh YBL, Krueger D. NICE: non-linear independent com-
ponents estimation. In: International Conference on Learning
Representations, 2015.

Kingma DP, Welling M. Auto-encoding variational bayes. In:
International Conference on Learning Representations, 2014.
Goodfellow I, Pouget-Abadie ], Mirza M, et al. Generative
adversarial nets. In: Advances in Neural Information Processing
Systems. Curran Associates, Inc., 2014.

Irsoy O, Cardie C. Deep recursive neural networks for com-
positionality in language. Advances in Neural Information Pro-
cessing Systems 2014; 27:2096-104.

Kusner MJ, Paige B, Hernandez-Lobato JM. Grammar vari-
ational autoencoder. In: International Conference on Machine
Learning. PMLR, 2017, 1945-54.

Dai H, Tian Y, Dai B, et al. Syntax-directed variational
autoencoder for molecule generation. In: International Con-
ference on Learning Representations, 2018.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

Guimaraes GL, Sanchez-Lengeling B, Outeiral C, et al
Objective-reinforced generative adversarial networks
(ORGAN) for sequence generation models arXiv preprint
arXiv:1705.10843. 2017.

Arjovsky M, Chintala S, Bottou L. Wasserstein generative
adversarial networks. In: International Conference on Machine
Learning. PMLR, 2017, 214-23.

YulL,Zhang W, Wang], et al. Sequence generative adversarial
nets with policy gradient. In: AAAI conference on Artificial
Intelligence, Vol. 490, 2017.

Sanchez-Lengeling B, Outeiral C, Guimaraes GL, et al. Opti-
mizing distributions over molecular space. An objective-
reinforced generative adversarial network for inverse-
design chemistry (ORGANIC) ChemRxiv. 2017;2017.
Prykhodko O, Johansson SV, Kotsias P-C, et al. A de
novo molecular generation method using latent vector
based generative adversarial network. J Chem 2019; 11(1):
1-13.

Méndez-Lucio O, Baillif B, Clevert D-A, et al. De novo gen-
eration of hit-like molecules from gene expression signa-
tures using artificial intelligence. Nat Commun 2020; 11(1):
1-10.

Hochreiter S, Schmidhuber J. Long short-term memory. Neu-
ral Comput 1997; 9(8): 1735-80.

Cho K, vanMerriénboer B, Gulcehre C, et al. Learning phrase
representations using RNN encoder-decoder for statistical
machine translation. In: Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing, 2014, 1724~
34. Association for Computational Linguistics.

Segler MHS, Kogej T, Tyrchan C, et al. Generating focused
molecule libraries for drug discovery with recurrent neural
networks. ACS Central Science 2018; 4(1): 120-31.

Zheng S, Yan X, Qiong G, et al. QBMG: quasi-biogenic
molecule generator with deep recurrent neural network. J
Chem 2019; 11(1): 1-12.

Moret M, Friedrich L, Grisoni F, et al. Generative molecular
design in low data regimes. Nature Machine Intelligence 2020;
2(3): 171-80.

Kotsias P-C, Arus-Pous ], Chen H, et al. Direct steering of
de novo molecular generation with descriptor conditional
recurrent neural networks. Nature Machine Intelligence 2020;
2(5): 254-65.

Arids-Pous ], Johansson SV, Prykhodko O, et al. Randomized
smiles strings improve the quality of molecular generative
models. ] Chem 2019; 11(1): 1-13.

Schuster M, Paliwal KK. Bidirectional recurrent neural net-
works. IEEE Transactions on Signal Processing 1997; 45(11):
2673-81.

Grisoni F, Moret M, Lingwood R, et al. Bidirectional molecule
generation with recurrent neural networks. ] Chem Inf Model
2020; 60(3): 1175-83.

Berglund M, Raiko T, Honkala M, et al. Bidirectional recurrent
neural networks as generative models. In: Advances in Neural
Information Processing Systems, 2015, 856-64.

Mou L, Yan R, Li G, et al. Backward and forward lan-
guage modeling for constrained sentence generation arXiv
preprint arXiv:1512.06612. 2015.

Arids-Pous ], Patronov A, Bjerrum EJ, et al. SMILES-based
deep generative scaffold decorator for de-novo drug design.
J Chem 2020; 12:1-18.

Jin W, Barzilay R, Jaakkola T. Junction tree variational
autoencoder for molecular graph generation. In: International
Conference on Machine Learning. PMLR, 2018, 2323-32.

2202 J9qUISAON 91 UO Jasn AJISISAIUN [EWION UeunH Aq 0ZFSSE9/7PEqRAa/9/22/3101e/q10/Wod dnodlwapese)/:sdjy WO papeojumoq



70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

Simonovsky M, Komodakis N. Graphvae: Towards generation
of small graphs using variational autoencoders. In: Interna-
tional Conference on Artificial Neural Networks. Springer, 2018,
412-22.

Jin W, Yang K, Barzilay R, et al. Learning multimodal graph-
to-graph translation for molecule optimization. In: Interna-
tional Conference on Learning Representations, 2019.

Jin W, Barzilay R, Jaakkola T. Multi-objective molecule gen-
eration using interpretable substructures. In: International
Conference on Machine Learning. PMLR, 2020, 4849-59.
Bickerton GR, Paolini GV, Besnard J, et al. Quantifying the
chemical beauty of drugs. Nat Chem 2012; 4(2): 90-8.

Ertl P, Schuffenhauer A. Estimation of synthetic accessibility
score of drug-like molecules based on molecular complexity
and fragment contributions. ] Chem 2009; 1(1): 1-11.

Liu Q, Allamanis M, Brockschmidt M, et al. Constrained
graph variational autoencoders for molecule design. In: Pro-
ceedings of the 32nd International Conference on Neural Informa-
tion Processing Systems. Curran Associates Inc, 2018, 7806-15.
Samanta B, De A, Jana G, et al. NEVAE: A deep generative
model for molecular graphs. In: Journal of Machine Learning
Research, 2020.

Liang G, Zhou Y. A review: Generative adversarial networks.
In: 2019 14th IEEE Conference on Industrial Electronics and
Applications. IEEE, 2019, 505-10.

De Cao N, Kipf T. MolGAN: An implicit generative model for
small molecular graphs. In: ICML 2018 workshop on Theoretical
Foundations and Applications of Deep Generative Models, 2018.
Zhu J-Y, Park T, Isola P, et al. Unpaired image-to-image
translation using cycle-consistent adversarial networks. In:
Proceedings of the IEEE International Conference on Computer
Vision, 2017, 2223-32.

Maziarka &, Pocha A, Kaczmarczyk J, et al. Mol-CycleGAN: a
generative model for molecular optimization. ] Chem 2020;
12(1): 1-18.

Li Y, Vinyals O, Dyer C, et al. Learning deep generative
models of graphs. In: International Conference on Learning
Representations, 2018.

Gilmer ], Schoenholz SS, Riley PF, et al. Neural message
passing for quantum chemistry. In: International Conference
on Machine Learning. PMLR, 2017, 1263-72.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

Deep generative models for molecular design | 11

LiY,ZhangL, Liu Z. Multi-objective de novo drug design with
conditional graph generative model. ] Chem 2018; 10(1): 1-24.
Wu Z, Ramsundar B, Feinberg EN, et al. MoleculeNet: a
benchmark for molecular machine learning. Chem Sci 2018;
9(2): 513-30.

You ], Ying R, Ren X, et al. GraphRNN: Generating realistic
graphs with deep auto-regressive models. In: International
Conference on Machine Learning. PMLR, 2018, 5708-17.

Popova M, Shvets M, Oliva J, et al. MolecularRNN: Generating
realistic molecular graphs with optimized properties arXiv
preprint arXiv:1905.13372. 2019.

Dinh L, Sohl-Dickstein ], Bengio S. Density estimation using
real NVP. In: International Conference on Learning Representa-
tions, 2017.

Durk, Kingma P, Dhariwal P. Glow: Generative flow with
invertible 1x1 convolutions. In: Advances in Neural Information
Processing Systems. Curran Associates, Inc., 2018.

Sun H,Mehta R, Zhou HH, et al. Dual-Glow: Conditional flow-
based generative model for modality transfer. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision,
2019, 10611-20.

Madhawa K, Ishiguro K, Nakago K, et al. GraphNVP: An
invertible flow model for generating molecular graphs arXiv
preprint arXiv:1905.11600. 2019.

Honda S, Akita H, Ishiguro K, et al. Graph residual flow for
molecular graph generation arXiv preprint arXiv:1909.13521.
2019.

Shi C, Xu M, Zhu Z, et al. GraphAF: a flow-based autoregres-
sive model for molecular graph generation. In: International
Conference on Learning Representations, 2020.

Zang C, Wang F. MoFlow: an invertible flow model for gen-
erating molecular graphs. In: Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2020, 617-26.

Kuznetsov M, Polykovskiy D. MolGrow: A graph normaliz-
ing flow for hierarchical molecular generation. Proceedings
of the AAAI Conference on Artificial Intelligence 2021; 35(9):
8226-34.

Preuer K, Renz P, Unterthiner T, et al. Fréchet ChemNet
distance: A metric for generative models for molecules in
drug discovery. ] Chem Inf Model 2018; 58(9): 1736—41.

2202 J9qUISAON 91 UO Jasn AJISISAIUN [EWION UeunH Aq 0ZFSSE9/7PEqRAa/9/22/3101e/q10/Wod dnodlwapese)/:sdjy WO papeojumoq



	Molecular design in drug discovery: a comprehensive review of deep generative models
	Introduction
	Molecular representation and dataset in molecular generation
	Deep molecular generative models
	Challenges
	Conclusion


